

Genomic management of inbreeding in breeding schemes

Theo Meuwissen, Anna Sonesson, John Woolliams

Norwegian University of Life Sciences, Ås, Norway. NOFIMA, Ås, Norway Roslin Institute, Edinburgh, UK

Introduction

- Management ΔF by Optimum Contribution Selection (Meuwissen '97)
 - –Maximise genetic gain / \overline{EBV} of parents
 - -Limit increase of coancestry / inbreeding
- In the era of genomics:
 - -GEBV are by GBLUP / BayesA/B/C/R
 - Genomic relationshipmatrix G
- Question arises: move to Genomic Optimum Contributions (GOC)
 - -Limit increase of genomic relationships G
 - -Sonesson et al. (2012): YES

However...

• GS-GOC resulted in correct ΔF_{genom} but low ΔG (Sonesson et al. 2012) –Compared to GS-AOC (yielded >> ΔF_{genom})

- -GS uses marker-set to achieve genetic progress /allele freq. changes
 - Allele freq. changes at QTL are desirable/markers are used as proxy for QTL
- -Can we use same marker-set to restrict allele freq. changes?
- F_{ped} = inbreeding at unlinked neutral loci
 - Do unlinked neutral loci exist in the genomics world?
 - F_{ped} underestimates real inbreeding in the genome

AIM:

- 1. What do we really want to achieve by managing ΔF ?
 - –Which measure of inbreeding should be used
- 2. Which OC method achieves this goal best –GOC / AOC / or a new G-matrix orthogonal to the direction of selection
- 3. Does ΔF management directly hinder ΔG and vice versa
 - $-\Delta G =>$ allele freq. changes (at QTL/ markers)
 - $-\Delta F$ management => limit allele freq. changes

Goals of inbreeding management

Goals of inbreeding management

- 1. Want allele freq. changes at QTL in favorable direction
- 2. Avoid consequences from inbreeding:
 - 1. Inbreeding depression mainly at 'fitness' traits
 - 2. Loss of genetic variation at traits currently not of interest
 - Hypothetical trait may become of future interest
 - Selective sweeps should not erase most of the genetic variation
 - 3. Recessive disease alleles drifting to high frequency
 - Although disease mutations may be mapped and selected against
 - Diverts selection pressures away from breeding goal

The solution for the three problems

- Maintain genomic heterozygosity (Het)
 - 1. Inbreeding depression is proportional to loss of heterozygosity (Δ Het*d)
 - 2. Genetic variance of hypothetical trait is $Het_t^*a^2$
 - 3. Recessive diseases are not expressed in heterozygot form

New definition of rate of inbreeding

• $Het_t = Het_0$ (1-F)

where *F* = inbreeding at the locus

«the locus» = a neutral locus, but may be linked to QTL / markers

• F is thus inbreeding at neutral linked locus (F_{NL})

 $-F_{ped}$ = inbreeding at neutral unlinked locus

• The rate of inbreeding at neutral linked loci is:

$$\Delta F_{NL} = \frac{Het_{t-1} - Het_t}{Het_{t-1}} = \frac{Hom_t - Hom_{t-1}}{1 - Hom_{t-1}}$$

Comparing alternative OC schemes

Comparing alternative OC methods

- AOC: pedigree relationships
- GOC: genomic relationships (VanRaden 2008; type II)
- GOC|b: genomic relationship orthogonal to the direction of selection b:

$$\mathbf{G}|\mathbf{b}=\frac{\mathbf{X}\mathbf{R}\mathbf{X}'}{m} \text{ with } \mathbf{R}=\mathbf{I}-\frac{\mathbf{b}\mathbf{b}'}{\mathbf{b}'\mathbf{b}}$$

- **b** = solution vector of SNP effects (changes from generation to generation)
- X = marker genotype matrix
- Desired rate of inbreeding: 0.5%.

Simulated fish breeding scheme

• Genome

- -10 chromosomes of size 1 Morgan
- -SNP panel of 9000 SNPs
- -1000 QTL loci (not in SNP panel)
- -1000 neutral linked (not QTL/ not in SNP panel)
 - Monitor ΔF_{NL} .
- Genomic selection scheme:
 - -2000 fish/generation
 - 1000 selection candidates (only genotyped)
 - 1000 sibs (genotyped + phenotyped (h²=0.4))

 ΔF : AOC vs. GOC

Results (so far):

- GOC maintains ΔF restriction at neutral linked loci
- $\Delta F(QTL) >> \Delta F(MRK)$
 - -GS causes allele frq. changes at SNPs => associated changes at QTL
 - Freq. changes at QTL >> freq. changes at SNPs

Results (so far):

- GOC maintains ΔF restriction at neutral linked loci
- $\Delta F(QTL) >> \Delta F(MRK)$
 - -GS causes allele frq. changes at SNPs => associated changes at QTL • Freq. changes at QTL < freq. changes at SNPs
- · AOC does not control the rate of inbreeding
 - ΔF_{NL} keeps increasing over 20 generations of selection

ΔF when G|b method was used

Results from G|b method

- ΔF_{ML} GOC|b exceeded ΔF_{NL} restriction
- ΔF is very similar at QTL, SNPs and NL-loci
 - –Seems drift at NL-loci and SNPs follows that at QTL
 - Majority of inbreeding is due to inbreeding at QTL, which is unrestrained

ΔG results

- Initially GOC and GOC|b yield highest genetic gain
- GOC|b gives generaly more gain than GOC
 - –But also more ΔF_{NL} .
- AOC yields lower ΔG intially but highest ΔG in the long term
 - due to the ever increasing $\Delta F_{\rm NL}.$
 - $-\Delta G$ does not decrease even though genetic variance reduces

Discussion

Define ΔF_{NL} as 'Genomic ΔF '

- Inbreeding is about the unknown risks of breeding
 - -About variation outside the breeding objective / causal variants
 - -Variation at neutral loci which may be linked to causal variants
 - –Genomic ΔF measures inbreeding due to genome and pedigree structure
 - ΔF_{ped} is inbreeding rate due to pedigree structure alone
- Selection is about the causal variants
 - -Correlated responses are due to pleiotropic effects of causal variants
 - Seperates risks due to correlated responses from those due to inbreeding

WGS data and ΔF management

- ΔF management was directed at:
 - -inbreeding depression at 'fitness' traits
 - -maintaining genetic variance at hypothetical trait
 - -avoiding drift at recessive disease loci
 - -all these refer to 'anonymous' loci that occur in the genome
- But WGS data contains all these loci:
 - –I.e. WGS data over several generations => genomic Δ F (directly)
 - This differs from GEBV estimation: WGS data ≠> GEBV

Runs of homozygosity: F_{ROH}

- Distinguishes IBD from IBS
 - -- 'Long' ROH => IBD
 - Using too long ROH : misses out on true IBD
 - –HOM is special case of F_{ROH} (runs of 1 SNP)
- Problem using long ROH:
 - -Long ROHs recombine and break up
 - Thus $\mathrm{F}_{\mathrm{ROH}}$ does not accumulate in the same way as inbreeding does

 $F_{t+1} \neq F_t + (1 - F_t) \Delta F$

- –So if using $\mathrm{F}_{\mathrm{ROH}}$ don't use too long runs
 - Probability of recombination over the considered time period should be negligible

Conclusions

On genomic ΔF

- Define the genomic rate of inbreeding as ΔF at neutral linked loci
- Adresses 3 main problems of inbreeding
 - 1. Inbreeding depression 'fitness' traits
 - 2. Genetic variation at hypothetical trait
 - 3. Drift at recessive disease loci
- Seperates risk from ΔF vs. from correlated selection responses
- WGS data can measure genomic ΔF
 - Contains all these 'anonymous' loci
 - Overwhelms the (relatively few) causal variants

Conclusions wrt GOC schemes

- GOC controls the rate of genomic inbreeding (ΔF_{NL})
- AOC did not control $\Delta F_{\rm NL}$
 - $-\Delta F_{NL}$ kept on increasing over 20 generations
- G|b relationship matrix resulted also in too high genomic ΔF .
- Hypothesis: GS affects freqs of SNPs => freq changes at QTL
 - –Disproved: inbreeding at QTL >> inbreeding at SNPs
 - -Can combine GOC and GS using a SNP panel

Acknowledgements:

- Christian Sørensen, Mark Henryon, Gebreyohans Gebregiwergis, Peer Berg
- Norwegian Research Council (prj.nr. 226275/E40)